
This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan 

State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Martin Konrad
Control System Engineer

Moving Towards
Continuous Delivery



Maintain a code repository

Automate the build

Make the build self-testing

Merge changes into a shared mainline several times a day

Every commit to mainline should build

Keep the build fast

 Test in a clone of the production environment

Make it easy to get the latest deliverables

Everyone can see the results of the latest build

Automate deployment

Continuous Integration Principles

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 2



Continuous Deployment
• Continuous Integration

• Automatically deploy after each change

Continuous Delivery
• Continuous Integration

• Automatically build a candidate after each change that could potentially be 
deployed

• Deployment process is automated but requires approval

• (e. g. one click deployment or push-to-deploy)

Continuous Delivery

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 3



Overall we do not expect to save a significant amount of development 
time, but…

Allows faster turn-around times

Helps to catch issues before code is
deployed to production system

 Full traceability

No risk of breaking anything
(you can always roll back)

Facilitates team work

Why Use Continuous Delivery?

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 4

http://en.wikipedia.org/wiki/File:Printer_in_1568-ce.png



Continuous Delivery At FRIB

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 5

VCS Build
Unit 

Tests
Packaging

Package

Test

Git
Jenkins

Jenkins Debian Glue

Lintian

piuparts

Repository

Reprepro

Deliver to 

Staging

Acceptance 

Tests

Deliver to 

Production

Puppet?

Development 

Environment

Vagrant

Puppet

Manual

Puppet



 Jenkins master and build slaves are managed by Puppet

 Jenkins jobs are automatically generated using Jenkins Job Builder
• Input: short YAML descriptions of the jobs + job templates

• Output: Jenkins jobs created/changed through API

• Puppet runs Jenkins Job Builder periodically

Automation makes sure
• We can easily add more build nodes/jobs

• All build machines are exactly the same

• All jobs of a family (e. g. Debian package jobs) are using the same rules

Managing Jenkins

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 6



Additional “FRIB” script extracts build dependencies from repositories 
and translates them into Jenkins triggers
• Backward dependencies (“depends on”) are translated into forward 

dependencies (“triggers”) automatically

• Puppet automatically runs this script before running JJB

A graphical representation of the dependencies is available on the 
Jenkins web GUI

Dependencies between Debian Packages I

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 7



Dependencies between Debian Packages II

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 8



Dependencies between Debian Packages III

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 9



 Jenkins: http://jenkins-ci.org

 Jenkins Debian Glue: http://jenkins-debian-glue.org

 Jenkins Job Builder: http://ci.openstack.org/jenkins-job-builder/

 Lintian: http://lintian.debian.org

Package Installation, Upgrading and Removal Testing Suite: 
http://piuparts.debian.org

Puppet: http://puppetlabs.com

Puppet modules and Vagrant files for EPICS: http://stash.nscl.msu.edu

Downloads

M. Konrad, EPICS Collaboration Meeting May 2015, Slide 10

http://jenkins-ci.org/
http://jenkins-debian-glue.org/
http://ci.openstack.org/jenkins-job-builder/
http://lintian.debian.org/
http://piuparts.debian.org/
http://puppetlabs.com/
http://stash.nscl.msu.edu/

